RV-8 (C-GNHK	Flt $#$:	10	Date:	12 Nov	2005
					Time	Fuel
						(1)
Weight:	1,740 lb.			Start		
CG:	85.81" aft of	datum		Taxi		
				Take-off		
Pilot:	Kevin Horton	1		Landing		
FTE:				Stop		
				Shut Down		

PURPOSE

- 1. Stall speed.
- 2. Cruise perf.
- 3. Phugoid.
- 4. CO concentration.
- 5. CHT spread.
- 6. Climb perf.
- 7. SHSS.

WEATHER

	ATIS	Wind	Vis	Weather	Temp.	Alt.
T/O						
LAND						

LIMITATIONS

- 1. Remain within gliding distance of airfield.
- 2. Max speed 220 kt.
- 3. Min speed 50 kt.
- 4. Minimize ground running time.
- 5. Minimize low power flight operations.
- 6. Maximum flight duration 90 minutes.
- 7. Day VMC only.
- 8. Max wind 10 kt, max crosswind 5 kt.
- 9. Aerobatics Prohibited

NE	VEIGHT AND BALANCE							
	ITEM	WEIGHT	ARM	MOMENT				
		(lb)	(in.)	(lb-in.)				
	Empty Weight	1,160	81.89	95,000.00				
	Pilot	210	91.78	19,273.80				
	Rear Seat	150	119.12	17,868.00				
	Forward Baggage	20	58.51	1,170.20				
	Rear Baggage	0	138.00	0.00				
	Rear Baggage Shelf	0	152.91	0.00				
	Ballast 1	0.0	0.00	0.00				
	Ballast 2	0.0	0.00	0.00				
	Zero Fuel Weight	1,540	86.56	133,312.00				

16,000.00

80.00

200

V

Fuel

^① Restricted Aerobatic Weight/CG Envelope

- ⁽²⁾ Aerobatic Weight/CG Envelope
- ③ Normal Weight/CG Envelope

1. BEFORE START

** SET ANALOG ALTIMETER **
** SET EFIS ALTIMETER TO 29.92 **
** START DATA RECORDING **
Oil Temp
Check all engine parametres OK.

Complete

Complete

2. ENGINE START Fuel EIS OK after start? Taxi Time Taxi Fuel Complete Complete

4. STALL SPEED

Conditions

Airspeed:	Trim at $1.3V_S$
Altitude:	$5,000 { m ft}$
Flaps:	UP
Power:	IDLE

Procedure

- 1. Establish a heading into the expected wind direction.
- 2. Trim at $1.3V_{\rm S}$
- 3. Conduct a very slow deceleration to the stall, noting the altitude and airspeed indications at the stall.
- 4. Conduct a stablization at 70 kt at the stall altitude on the same heading.
- 5. Decelerate at 1 kt/s to the stall.
- 6. Note the altitude and airspeed indications at the stall.

Results

		SLOW DECEL		1 KT/S DECEL		
Time	Fuel	SW	Stall	SW	Stall	Remarks
	(USG)	(KIAS)	(KIAS)	(KIAS)	(KIAS)	

Complete

5. CRUISE PERF

Conditions

Airspeed:	-
Altitude:	$7,500 {\rm ~ft}$
Flaps:	UP
Power:	75%

Procedure

- 1. Set both altimeters to 29.92.
- 2. Set rpm and MP as per cruise power charts.
- 3. Set mixture to obtain max power fuel flow, as per cruise power charts.
- 4. Allow speed to stabilize, then record data.
- 5. Repeat with max economy fuel flow.

Results

Alt	OAT	RPM	MP	FF	Fuel	IAS	Remarks
(ft)	(°C)				(USG)	(kt)	

Complete

6. PHUGOID - CLIMB

Conditions

Airspeed:	V_{CL}
Altitude:	3,000 ft
Flaps:	UP
Power:	MCT

Procedure

- 1. Trim at the specified condition.
- 2. Initiate a phugoid oscillation by raising the nose until the speed has decreased by 10-15 kt, then releasing the stick.
- 3. Use small rudder inputs to keep the wings level.
- 4. Note damping.
- 5. Record altitude and speed at the phugoid peaks.

Results

Fuel	(USG)	

Altitude (ft)	Speed (KIAS)

Complete	

7. CO VS COCKPIT HEAT - CLIMB

3,000 ft

UP

Conditions Airspeed: Altitude:

Flaps:

Power: 75%Procedure check CO levels in a cruise climb with cockpit heat OFF and ON. Cockpit vent air OFF. Check front and rear seat heat individually. Complete 8. CHT SPREAD - CRUISE Conditions Airspeed: Altitude: 8,000 ft Flaps: UPPower: 65%Procedure Record CHT of each cylinder

Complete

te

9. CLIMB PERF

Conditions

Airspeed:	70 kt
Altitude:	8,000 ft
Flaps:	UP
Power:	MAX

Procedure

- 1. Set both altimeters to 29.92.
- 2. Select an altitude band that will bracket the target altitude and provide climb durations of at least 90 seconds.
- 3. Established a stabilized climb at the target speed on a stable heading at 90° to the wind direction.
- 4. Record data every 500 ft, if possible.
- 5. Repeat on the reciprocal heading.

Results

Hdg	Fuel	Alt	Time	OAT	Remarks
(°)	(USG)	(ft)	(s)	(°C)	

Complete

10. SHSS - T/O

Conditions

Airspeed:	$1.2 V_S$
Altitude:	$3,000 {\rm ~ft}$
Flaps:	UP
Power:	MCT

Procedure

- 1. Slowly apply full right rudder, while using aileron as required to maintain heading.
- 2. Note any signs of rudder or aileron force reduction with increasing control input.
- 3. Note bank angle at full rudder.
- 4. Release rudder while holding aileron input, and note whether the sideslip decreases.
- 5. Repeat, and note whether the low wing raises when the aileron control is released first.
- 6. Repeat, using left rudder.

	Complete
11. END TEST	
** STOP DATA RECORDING **	
	Complete